Quantum Inozemtsev model, quasi-exact solvability and \mathcal{N}-fold supersymmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 3410335
(http://iopscience.iop.org/0305-4470/34/47/502)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:44

Please note that terms and conditions apply.

Corrigendum

Quantum Inozemtsev model, quasi-exact solvability and \mathcal{N}-fold supersymmetry R Sasaki and K Takasaki 2001 J. Phys. A: Math. Gen. 34 9533-9553

Three equations should be corrected in this paper.
On page 9539, a factor 2 should be put in front of g_{S} on the left-hand side of equation (3.19) which should read as
$(k+1)\left(2 k+1+2 g_{S}\right) \alpha_{k+1}=(2 k b-E) \alpha_{k}+2 a(k-\mathcal{M}-1) \alpha_{k-1}$.

On page 9542 , equation (4.15) should similarly read as
$(k+1)\left(2 k+1-b+2 g_{S}\right) \alpha_{k+1}=\left(2 k\left(k-2 a+g_{S}\right)-E\right) \alpha_{k}+4 a(k-\mathcal{M}-1) \alpha_{k-1}$.

On page 9542, the unnumbered equation at the end of section 4 should read as
$\alpha_{\mathcal{M}+1}=0 \Leftrightarrow\left(2 \mathcal{M}\left(\mathcal{M}-2 a+g_{S}\right)-E\right) \alpha_{\mathcal{M}}-4 a \alpha_{\mathcal{M}-1}=0 \quad \Leftrightarrow \quad \operatorname{det}(\tilde{H}-E)=0$.

